A sex-specific transcription factor controls male identity in a simultaneous hermaphrodite
نویسندگان
چکیده
Evolutionary transitions between hermaphroditic and dioecious reproductive states are found in many groups of animals. To understand such transitions, it is important to characterize diverse modes of sex determination utilized by metazoans. Currently, little is known about how simultaneous hermaphrodites specify and maintain male and female organs in a single individual. Here we show that a sex-specific gene, Smed-dmd-1 encoding a predicted doublesex/male-abnormal-3 (DM) domain transcription factor, is required for specification of male germ cells in a simultaneous hermaphrodite, the planarian Schmidtea mediterranea. dmd-1 has a male-specific role in the maintenance and regeneration of the testes and male accessory reproductive organs. In addition, a homologue of dmd-1 exhibits male-specific expression in Schistosoma mansoni, a derived, dioecious flatworm. These results demonstrate conservation of the role of DM domain genes in sexual development in lophotrochozoans and suggest one means by which modulation of sex-specific pathways can drive the transition from hermaphroditism to dioecy.
منابع مشابه
A forkhead protein controls sexual identity of the C. elegans male somatic gonad.
In sex determination, globally acting genes control a spectrum of tissue-specific regulators to coordinate the overall development of an animal into one sex or the other. In mammals, primary sex determination initially occurs in the gonad, with the sex of other tissues specified as a secondary event. In insects and nematodes, globally acting regulatory pathways have been elucidated, but the mor...
متن کاملSexually Dimorphic Differentiation of a C. elegans Hub Neuron Is Cell Autonomously Controlled by a Conserved Transcription Factor
Functional and anatomical sexual dimorphisms in the brain are either the result of cells that are generated only in one sex or a manifestation of sex-specific differentiation of neurons present in both sexes. The PHC neuron pair of the nematode C. elegans differentiates in a strikingly sex-specific manner. In hermaphrodites the PHC neurons display a canonical pattern of synaptic connectivity si...
متن کاملPhase-specific expression of an insulin-like androgenic gland factor in a marine shrimp Lysmata wurdemanni: Implication for maintaining protandric simultaneous hermaphroditism
BACKGROUND Shrimp in the genus Lysmata have a unique and rare sexual system referred to as protandric simultaneous hermaphroditism, whereby individuals mature first as male (male phase), and then the female function may also develop as the shrimp grow, so that the gonad is able to produce both eggs and sperms simultaneously, a condition called simultaneous hermaphroditism (euhermaphrodite phase...
متن کاملRegulation of sex-specific differentiation and mating behavior in C. elegans by a new member of the DM domain transcription factor family.
Mutations in Caenorhabditis elegans gene mab-23 cause abnormal male tail morphology and abolish male fecundity but have no obvious effect in the hermaphrodite. Here we show that mab-23 encodes a DM (Doublesex/MAB-3) domain transcription factor necessary for specific aspects of differentiation in sex-specific tissues of the male. mab-23 is required for the patterning of posterior sensory neurons...
متن کاملThe female-specific doublesex isoform regulates pleiotropic transcription factors to pattern genital development in Drosophila.
Regulatory networks driving morphogenesis of animal genitalia must integrate sexual identity and positional information. Although the genetic hierarchy that controls somatic sexual identity in the fly Drosophila melanogaster is well understood, there are very few cases in which the mechanism by which it controls tissue-specific gene activity is known. In flies, the sex-determination hierarchy t...
متن کامل